Trajectory prediction and planning are fundamental yet disconnected components in autonomous driving. Prediction models forecast surrounding agent motion under unknown intentions, producing multimodal distributions, while planning assumes known ego objectives and generates deterministic trajectories. This mismatch creates a critical bottleneck: prediction lacks supervision for agent intentions, while planning requires this information. Existing prediction models, despite strong benchmarking performance, often remain disconnected from planning constraints such as collision avoidance and dynamic feasibility. We introduce Plan TRansformer (PTR), a unified Gaussian Mixture Transformer framework integrating goal-conditioned prediction, dynamic feasibility, interaction awareness, and lane-level topology reasoning. A teacher-student training strategy progressively masks surrounding agent commands during training to align with inference conditions where agent intentions are unavailable. PTR achieves 4.3%/3.5% improvement in marginal/joint mAP compared to the baseline Motion Transformer (MTR) and 15.5% planning error reduction at 5s horizon compared to GameFormer. The architecture-agnostic design enables application to diverse Transformer-based prediction models. Project Website: https://github.com/SelzerConst/PlanTRansformer
A consistent trend throughout the research of oriented object detection has been the pursuit of maintaining comparable performance with fewer and weaker annotations. This is particularly crucial in the remote sensing domain, where the dense object distribution and a wide variety of categories contribute to prohibitively high costs. Based on the supervision level, existing oriented object detection algorithms can be broadly grouped into fully supervised, semi-supervised, and weakly supervised methods. Within the scope of this work, we further categorize them to include sparsely supervised and partially weakly-supervised methods. To address the challenges of large-scale labeling, we introduce the first Sparse Partial Weakly-Supervised Oriented Object Detection framework, designed to efficiently leverage only a few sparse weakly-labeled data and plenty of unlabeled data. Our framework incorporates three key innovations: (1) We design a Sparse-annotation-Orientation-and-Scale-aware Student (SOS-Student) model to separate unlabeled objects from the background in a sparsely-labeled setting, and learn orientation and scale information from orientation-agnostic or scale-agnostic weak annotations. (2) We construct a novel Multi-level Pseudo-label Filtering strategy that leverages the distribution of model predictions, which is informed by the model's multi-layer predictions. (3) We propose a unique sparse partitioning approach, ensuring equal treatment for each category. Extensive experiments on the DOTA and DIOR datasets show that our framework achieves a significant performance gain over traditional oriented object detection methods mentioned above, offering a highly cost-effective solution. Our code is publicly available at https://github.com/VisionXLab/SPWOOD.
Deploying new architectures in large-scale user response prediction systems incurs high model switching costs due to expensive retraining on massive historical data and performance degradation under data retention constraints. Existing knowledge distillation methods struggle with architectural heterogeneity and the prohibitive cost of transferring large embedding tables. We propose CrossAdapt, a two-stage framework for efficient cross-architecture knowledge transfer. The offline stage enables rapid embedding transfer via dimension-adaptive projections without iterative training, combined with progressive network distillation and strategic sampling to reduce computational cost. The online stage introduces asymmetric co-distillation, where students update frequently while teachers update infrequently, together with a distribution-aware adaptation mechanism that dynamically balances historical knowledge preservation and fast adaptation to evolving data. Experiments on three public datasets show that CrossAdapt achieves 0.27-0.43% AUC improvements while reducing training time by 43-71%. Large-scale deployment on Tencent WeChat Channels (~10M daily samples) further demonstrates its effectiveness, significantly mitigating AUC degradation, LogLoss increase, and prediction bias compared to standard distillation baselines.
Knowledge distillation (KD) is a machine learning framework that transfers knowledge from a teacher model to a student model. The vanilla KD proposed by Hinton et al. has been the dominant approach in logit-based distillation and demonstrates compelling performance. However, it only performs sample-wise probability alignment between teacher and student's predictions, lacking an mechanism for class-wise comparison. Besides, vanilla KD imposes no structural constraint on the probability space. In this work, we propose a simple yet effective methodology, bilateral contrastive knowledge distillation (BicKD). This approach introduces a novel bilateral contrastive loss, which intensifies the orthogonality among different class generalization spaces while preserving consistency within the same class. The bilateral formulation enables explicit comparison of both sample-wise and class-wise prediction patterns between teacher and student. By emphasizing probabilistic orthogonality, BicKD further regularizes the geometric structure of the predictive distribution. Extensive experiments show that our BicKD method enhances knowledge transfer, and consistently outperforms state-of-the-art knowledge distillation techniques across various model architectures and benchmarks.
Timely and accurate identification of student misconceptions is key to improving learning outcomes and pre-empting the compounding of student errors. However, this task is highly dependent on the effort and intuition of the teacher. In this work, we present a novel approach for detecting misconceptions from student-tutor dialogues using large language models (LLMs). First, we use a fine-tuned LLM to generate plausible misconceptions, and then retrieve the most promising candidates among these using embedding similarity with the input dialogue. These candidates are then assessed and re-ranked by another fine-tuned LLM to improve misconception relevance. Empirically, we evaluate our system on real dialogues from an educational tutoring platform. We consider multiple base LLM models including LLaMA, Qwen and Claude on zero-shot and fine-tuned settings. We find that our approach improves predictive performance over baseline models and that fine-tuning improves both generated misconception quality and can outperform larger closed-source models. Finally, we conduct ablation studies to both validate the importance of our generation and reranking steps on misconception generation quality.
Occupancy prediction provides critical geometric and semantic understanding for robotics but faces efficiency-accuracy trade-offs. Current dense methods suffer computational waste on empty voxels, while sparse query-based approaches lack robustness in diverse and complex indoor scenes. In this paper, we propose DiScene, a novel sparse query-based framework that leverages multi-level distillation to achieve efficient and robust occupancy prediction. In particular, our method incorporates two key innovations: (1) a Multi-level Consistent Knowledge Distillation strategy, which transfers hierarchical representations from large teacher models to lightweight students through coordinated alignment across four levels, including encoder-level feature alignment, query-level feature matching, prior-level spatial guidance, and anchor-level high-confidence knowledge transfer and (2) a Teacher-Guided Initialization policy, employing optimized parameter warm-up to accelerate model convergence. Validated on the Occ-Scannet benchmark, DiScene achieves 23.2 FPS without depth priors while outperforming our baseline method, OPUS, by 36.1% and even better than the depth-enhanced version, OPUS†. With depth integration, DiScene† attains new SOTA performance, surpassing EmbodiedOcc by 3.7% with 1.62$\times$ faster inference speed. Furthermore, experiments on the Occ3D-nuScenes benchmark and in-the-wild scenarios demonstrate the versatility of our approach in various environments. Code and models can be accessed at https://github.com/getterupper/DiScene.
Large language models (LLMs) are increasingly embedded in AI-based tutoring systems. Can they faithfully model novice reasoning and metacognitive judgments? Existing evaluations emphasize problem-solving accuracy, overlooking the fragmented and imperfect reasoning that characterizes human learning. We evaluate LLMs as novices using 630 think-aloud utterances from multi-step chemistry tutoring problems with problem-solving logs of student hint use, attempts, and problem context. We compare LLM-generated reasoning to human learner utterances under minimal and extended contextual prompting, and assess the models' ability to predict step-level learner success. Although GPT-4.1 generates fluent and contextually appropriate continuations, its reasoning is systematically over-coherent, verbose, and less variable than human think-alouds. These effects intensify with a richer problem-solving context during prompting. Learner performance was consistently overestimated. These findings highlight epistemic limitations of simulating learning with LLMs. We attribute these limitations to LLM training data, including expert-like solutions devoid of expressions of affect and working memory constraints during problem solving. Our evaluation framework can guide future design of adaptive systems that more faithfully support novice learning and self-regulation using generative artificial intelligence.
Because of the pervasive use of deep neural networks (DNNs), especially in high-stakes domains, the interpretability of DNNs has received increased attention. The general idea of rationale extraction (RE) is to provide an interpretable-by-design framework for DNNs via a select-predict architecture where two neural networks learn jointly to perform feature selection and prediction, respectively. Given only the remote supervision from the final task prediction, the process of learning to select subsets of features (or \emph{rationales}) requires searching in the space of all possible feature combinations, which is computationally challenging and even harder when the base neural networks are not sufficiently capable. To improve the predictive performance of RE models that are based on less capable or smaller neural networks (i.e., the students), we propose \textbf{REKD} (\textbf{R}ationale \textbf{E}xtraction with \textbf{K}nowledge \textbf{D}istillation) where a student RE model learns from the rationales and predictions of a teacher (i.e., a \emph{rationalist}) in addition to the student's own RE optimization. This structural adjustment to RE aligns well with how humans could learn effectively from interpretable and verifiable knowledge. Because of the neural-model agnostic nature of the method, any black-box neural network could be integrated as a backbone model. To demonstrate the viability of REKD, we conduct experiments with multiple variants of BERT and vision transformer (ViT) models. Our experiments across language and vision classification datasets (i.e., IMDB movie reviews, CIFAR 10 and CIFAR 100) show that REKD significantly improves the predictive performance of the student RE models.
The semi-supervised semantic segmentation (S4) can learn rich visual knowledge from low-cost unlabeled images. However, traditional S4 architectures all face the challenge of low-quality pseudo-labels, especially for the teacher-student framework.We propose a novel SemiEarth model that introduces vision-language models (VLMs) to address the S4 issues for the remote sensing (RS) domain. Specifically, we invent a VLM pseudo-label purifying (VLM-PP) structure to purify the teacher network's pseudo-labels, achieving substantial improvements. Especially in multi-class boundary regions of RS images, the VLM-PP module can significantly improve the quality of pseudo-labels generated by the teacher, thereby correctly guiding the student model's learning. Moreover, since VLM-PP equips VLMs with open-world capabilities and is independent of the S4 architecture, it can correct mispredicted categories in low-confidence pseudo-labels whenever a discrepancy arises between its prediction and the pseudo-label. We conducted extensive experiments on multiple RS datasets, which demonstrate that our SemiEarth achieves SOTA performance. More importantly, unlike previous SOTA RS S4 methods, our model not only achieves excellent performance but also offers good interpretability. The code is released at https://github.com/wangshanwen001/SemiEarth.
Bootstrap-based Self-Supervised Learning (SSL) has achieved remarkable progress in audio understanding. However, existing methods typically operate at a single level of granularity, limiting their ability to model the diverse temporal and spectral structures inherent in complex audio signals. Furthermore, bootstrapping representations from scratch is computationally expensive, often requiring extensive training to converge. In this work, we propose the Convolutional Audio Transformer (CAT), a unified framework designed to address these challenges. First, to capture hierarchical audio features, CAT incorporates a Multi-resolution Block that aggregates information across varying granularities. Second, to enhance training efficiency, we introduce a Representation Regularization objective. Drawing inspiration from generative modeling, this auxiliary task guides the student model by aligning its predictions with high-quality semantic representations from frozen, pre-trained external encoders. Experimental results demonstrate that CAT significantly outperforms baselines on audio understanding benchmarks. Notably, it achieves competitive performance on the AudioSet 20k dataset with 5 times faster convergence than existing methods. Codes and checkpoints will be released soon at https://github.com/realzhouchushu/CAT.